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We investigate the emergence and properties of long-distance genuine multipartite entanglement, induced
via three localized magnetic defects, in a one-dimensional transverse-field XX spin-1/2 chain. Using both
analytical and numerical techniques, we determine the conditions for the existence of bound states localized
at the defects. We find that the reduced density matrix (RDM) of the defects exhibits long-distance genuine
multipartite entanglement (GME) across the whole range of the Hamiltonian parameter space, including regions
where the two-qubit concurrence is zero. We quantify the entanglement by using numerical lower bounds for
the GME concurrence, as well as by analytically deriving the GME concurrence in regions where the RDM is
of rank 2. Our work provides insights into generating multipartite entanglement in many-body quantum systems

via local control techniques.
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I. INTRODUCTION

Multipartite entanglement is a fundamental resource in
a variety of quantum information protocols, including mul-
tiparty quantum key distribution [1], quantum teleportation
and dense coding [2], quantum metrology [3], and quantum
computation [4]. Such centrality in a field so relevant as
quantum information has attracted numerous works aimed at
its quantification under different conditions. While significant
progress has been made in characterizing and quantifying
multipartite entanglement in pure states, such as identify-
ing inequivalent classes under stochastic local operations
and classical communication (SLOCC) [5-7] and developing
related measures [8], studying multipartite entanglement in
mixed states remains challenging [9-14] and an open prob-
lem. A variety of different avenues for tackling mixed-state
multipartite entanglement have been proposed, from semidef-
inite programming [15] to geometric approaches [16] and
witnesses [17]. By exploiting such quantities, it is now pos-
sible to investigate the multipartite entanglement in ground
states of many-body systems, and many results for spin-1/2
models have already been published over the years [18-21].
Thanks to these advancements, the general behaviors of mul-
tipartite entanglement are well known. Among them, one of
the most relevant is the fact that multipartite entanglement,
similar to the bipartite one, is limited in range when evalu-
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ated for ground states of local Hamiltonians with short-range
interactions.

Although the spatial range at which two spins have nonzero
concurrence can be extended by breaking the translational
invariance of the model, e.g., by modifying the edge [22-25]
or the on-site couplings [26-28], the applicability of a similar
approach to extend the range of multipartite entanglement has
not been thoroughly investigated thus far. General results for
the achievability of multipartite entanglement at an infinite
distance were presented by Parez and Witczak-Krempa [29].
In this paper, we seek to address this gap by addressing
the problem of generating long-distance multipartite entan-
glement among three magnetic defects embedded in the XX
spin-1/2 Hamiltonian. In our approach, the defects are rep-
resented by a magnetic field in the transverse direction on
three sites different from the rest of the system. We investigate
the various classes of multipartite entanglement as a function
of both the bulk’s and defects’ magnetic field intensities and
the defects’ distance, using a combination of analytical tools,
lower-bound techniques, and entanglement witnesses. Inter-
estingly, we show how the presence of the magnetic defects
defines regions in the Hamiltonian’s parameter space where
discrete energy eigenstates, associated with localized states,
appear in its spectrum. These eigenstates can sustain long-
distance genuine multipartite entanglement (GME), which
can be quantified with GME concurrence [30], regardless of
the relative distance between the defects.

This paper is organized as follows: In Sec. II we introduce
the XX spin-1/2 model with magnetic defects and define the

©2025 American Physical Society
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FIG. 1. Spin-1/2 chain with periodic boundary conditions of
even size N, described by the Hamiltonian in Eq. (1), where on sites
[, m, and n (the defects) an additional magnetic field ¢ is applied.
Defects [ and n are equidistant from the defect located at site m.

regions exhibiting discrete eigenenergies; in Sec. III we derive
the reduced density matrix (RDM) of the defects’ subsystem
and define the figures of merit for tripartite genuine multipar-
tite entanglement that are used in Sec. IV to present our main
result about long-distance GME concurrence. In Sec. V we
conclude the paper and discuss prospects for further research.

II. THE MODEL

We consider the one-dimensional XX spin-1/2 chain in
a transverse magnetic field /2, which is uniform everywhere
except for three spins, located at sites k + jd (j = —1,0, 1),
hereafter dubbed “defects.” The Hamiltonian describing the
system’s dynamics consists of two distinct components:

H = Hxx + Haer. (D

The first is a homogeneous XX Hamiltonian,

N
Z& )

where J is the coupling constant, which from here on we
assume to be equal to 1; & is the transverse field; 6%, with
o =x,y,z, are the Pauli operators acting on the ith spin;
and periodic boundary conditions are imposed (67 = 6 y)-
In the thermodynamic limit, the model in Eq. (2) admits a
first-order quantum phase transition that separates a gapped
paramagnetic phase characterizing the region |h| > 2 from
a gapless critical phase for |#| < 2. The second term is the
translational symmetry-breaking term given by

1
8 A
=LY d @

as depicted in Fig. 1. In Eq. (3), ¢ stands for the strength of
the defects, and d is the relative distance between them that
we assume is much smaller than the size of the system, i.e.,
d < N. The Hamiltonian in Eq. (1) holds several symmetry
properties. However, for our purposes, it is worth noting that
H possesses U(1) symmetry, implying that the total magneti-
zation along the z axis is conserved, i.e., H, Zi 6f1=0.
Regardless of the presence of defects, the model in
Eq. (1) can be mapped into a quadratic Hamiltonian of
spinless fermions, with annihilation and creation operators
given by ¢; and 6;, respectively, via the Jordan-Wigner

bJIEP
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transformation [31],
N-1
H=J Z(cjc,url + ¢ ci) + Pocjen + cj\,cl)
i1

—hZc c,—I—schﬂdckﬂd 4)

j=—1

Here, P. stands for the parity operator along z with eigen-
values £1. Hence, depending on the total magnetization of
the state, it induces antiperiodic or periodic boundary con-
ditions [32,33]. In the following, we will consider only the
positive-parity subspace because the RDM of the three defects
whose entanglement properties we investigate are equivalent
toN > 1.

Because of its quadratic nature, the Hamiltonian in Eq. (4)
is readily diagonalized as

N
A=Y wéj. (5)
k=1

where w; and é;{ = Zn PrnCy are, respectively, the single-
particle eigenenergies and eigenstates of the fermionic prob-
lem. In the limit ¢ — 0 we recover wy = h — 2 cos(2rwk/N),
and in the thermodynamic limit, the single-particle spectrum
makes up a continuous band with wy € [h — 2, h 4 2], with
the eigenstates encoding plane waves [34]. In contrast, taking
into account a strictly positive value of &, up to three discrete
energy levels emerge from below the band. Using a Green’s
function approach [35], it is possible to analytically determine
the boundaries ¢(d) between the regions with one, two, and
three discrete eigenstates of the Hamiltonian. Those regions
are

1
0 —, 6
<8<d (62)
1 3 (6b)
—<eg< —,
d d
3
E<8 (6¢)

for one, two, and three discrete energy levels, respectively.
The details of the derivation of these results can be found in
the Appendix. In Fig. 2 we show the energy spectrum of the
fermionic Hamiltonian in Eq. (4), withh =2 andJ =1, as a
function of the product ed, where it is possible to have the
emergence of discrete single-particle energies. Changing #,
the single-particle energy spectrum is shifted vertically. Dif-
ferent from the ones in the band, the eigenstates corresponding
to the discrete eigenenergies are exponentially localized on
the defects [36]. In contrast, the continuous energy band gets
distorted, and its eigenstates acquire a contribution describing
backscattering at the impurity sites [35,37]. From Eq. (6) it is
possible to identify three different regions in the e-d plane,
each one of them characterized by a different number of
localized states. These regions are depicted in Fig. 3.

III. MULTTPARTITE ENTANGLEMENT

As already mentioned, the main goal of this work is to
study the multipartite entanglement in the ground state of

032434-2



LONG-DISTANCE GENUINE MULTIPARTITE ...

PHYSICAL REVIEW A 111, 032434 (2025)

4 —
— wy
w3

2 Band

1 Localized State 2 Localized States 3 Localized States

0 1 2 3 4 5
ed

FIG. 2. Single-particle energy spectrum for & = 2 illustrating the
emergence of discrete energy levels below the continuous band as a
function of ¢ ford = 1.

the model in Eq. (1) between the spins on which magnetic
defects are present. Toward this end, we first need to evaluate
the RDM that is obtained by tracing out all the degrees of
freedom associated with the spins on which no defects are
present. The form of this matrix will take into account all
the symmetries of the state from which it is obtained. In
our case, it is well-known that the ground state of the XX
model with periodic boundary conditions, as in Eq. (2), has
a vanishing momentum that implies that the RDM is real [33].
This result remains unaffected by the presence of defects.
Moreover, since the distance between the first and second de-
fects and that between the second and the third are equal, there
is a reflection symmetry with respect to the central defect.
Furthermore, the Hamiltonian in Eq. (1) preserves the global
magnetization, and therefore, all its eigenstates, including the
ground state, have a well-determined value of total magnetiza-
tion. Taking into account all these properties, the RDM in the

o : 3 Localized States

FIG. 3. Illustration showcasing the regions where one, two, and
three localized states appear in the ¢ —d plane. The curve between the
regions of one and two localized states is given by ¢ = 1/d, and the
curve between the regions of two and three localized states is given
by e =3/d.

computational basis becomes

poo O 0 0 0 0 0 0
0 pu p2 0 pu O 0 0
0 p2 p2 0 pp O 0 0
b= 0 0 0 p3 0 p35 p3s O
0 pu p2 0 pn O 0 0
0 0 0 oms 0 pss p3s O
0 0 0 o6 O p35 p33 O
0

0 0 0 0 0 0 pp
(7

This matrix is, in general, a rank-8 density matrix that can be
decomposed as follows:

3
p = pol000)(000] + > pilgW:) (sWi|
i=1
3
+ > PilgW) (Wil + pal111)(111], ®)

i=1

where |gW;) and |gW;) are, respectively, the generalized W and
the generalized spin-flipped W states,

lgW;) = a” 1001) + & [010) + & [100) )

lgW;) = b [011) + 5 1101) + 5 [110).  (10)

This decomposition is particularly useful since it allows us to
prove that the three-tangle [38] of p vanishes, i.e., 73(p) = 0.
Such a result follows straightforwardly from the convex-roof
extension of 73 to mixed states [39] and from the well-known
results that for a generalized W state, t3 is identically zero.
This restricts the possibility of genuine multipartite entan-
glement to W type [40], which has 73 = 0 but finite GME
concurrence Come [30]. The GME concurrence for pure states
is defined as

Come(l¥)) = miiH\/2(1 —Tr{p?}), an

where p; is the RDM of the ith bipartition. For mixed states,
similar to the three-tangle, the GME concurrence can be cal-
culated by exploiting the convex-roof extension,

Come(p) = inf Y piCame(IW:)), (12)

such that p = >, p;|W;)(¥;| and the minimization procedure
is carried out over all possible pure-state decompositions of p.

The computation of the GME concurrence for the case of
more than one localized state (that is, when the rank of the
density matrix is equal to or larger than 2) is a highly nontriv-
ial problem, which makes the analytical solution challenging
to obtain. Consequently, we resort to numerical techniques
to determine a lower bound for the GME concurrence ex-
ploiting two different methods, one presented by Ma et al.
[30] and one presented by Hong et al. [41]. Both algorithms
were embedded within a Monte Carlo algorithm using 100
runs with random initial states, with the global minimum
taken to be the one with the highest GME concurrence. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [42] optimizer
was employed as the local optimizer, taken from the SCIPY
library [43].
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To complement the previous method, we also consider a
separability criterion for the density matrix resorting to the
algorithm presented by Hofmann et al. [44], which iteratively
attempts to decompose a given density matrix p into a convex
sum of biseparable components. At iteration k + 1, the density
matrix is expressed as the convex sum of k terms | ) (V¥x|,
where |y ) is a biseparable state, and an additional semidefi-
nite matrix pg. 1. If, for a certain k, the condition

W="Tr(pe,) — 3 <0 (13)

is satisfied, the density matrix is separable with respect to
some bipartition (see Gurvits and Barnum [45] for further
details). The data are obtained by considering 1500 iterations
with 1000 randomly generated biseparable states for each
iteration.

Together with the multipartite entanglement, to have a
complete characterization of p, we also have to evaluate the
bipartite entanglement between each pair of spins. Such en-
tanglement can easily be quantified by the concurrence [46].
Due to the symmetry in the model, the concurrence between
the first and the second must be equal to the one from the
second and the third, i.e., Cj2 = Cp3. Since the partial trace of
p with respect to any qubit is an X state (that is, the RDM is
zero excepts along the two diagonals), we can determine the
concurrence via the simplified expression provided by Amico
et al. [47]. Accordingly, the concurrence between the first and
second defects (and, similarly, between the second and third
defects) is

Cra=2max{0, |p12+ 35| —/(Poo+paa)(p33 + p17)}  (14)

while concurrence between the first and third defects is

Cy3=2max{0, |p1a+p36] —v/(poo+p2)(pss+p77))  (15)

IV. LONG-DISTANCE GME CONCURRENCE

As discussed in Sec. II, the XX model in Eq. (2) exhibits
two distinct thermodynamic phases, a gapless one for |h| <
2 and a gapped one for |h| > 2. Therefore, it is natural to
study the emergence of multipartite entanglement following
the presence of defects in the two regions separately.

A. The paramagnetic phase

For h > 2, discrete eigenstates emerge from below the
continuous band for any ¢ > 0 (see Fig. 2). For0 < ¢ < 1/d,
only one discrete energy level is present. As a consequence,
the reduced density matrix can be written as

p = plgW){gW |+ (1 — p)|000)(000], (16)

which is of rank 2. This case is of particular interest since we
can analytically determine the GME concurrence following
the path depicted in Refs. [48,49]. We start by analyzing the
GME concurrence of the family of pure states,

Ip, @) = /DPlgW) + €“y/1 — p|000), (17)

where 0 < p <1 and 0 < ¢ < 27 can be considered free
parameters. Using Eq. (11) and recalling the expression of the
generalized W state in Eq. (9), the GME concurrence of these
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—— d=2
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0.6 — d=14
—— d=5
- d=06
50.4 d=7
Q d=38
d=9
0.2
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0.0 0.2 0.4 0.6 0.8 1.0

ed

FIG. 4. Analytically determined GME concurrence as a function
of ed in the presence of one localized state.

states is
Comie(p, ¢) =2pminfla|y/1 — |ai 2, lazly/1 — |a2|?,

las|y/1 — |as 2. (18)

As a result, the zero polytope [50] of the states in Eq. (18)
is a trivial one, where p = 0, assuming |a;|, |az|, |az| # O, 1.
The next step is to construct the convex characteristic curve
[50]. Since 0 < |ay], |azl, laz] < 1, Come(p, ¢) monotonically
increases with p and is invariant with respect to ¢. Moreover,
CoMmEe(p, @) also linearly increases with p, which implies that it
is already convex. As a result, the GME concurrence is equal
to the weight of the generalized W state, similar to how the
concurrence between a Bell state and an unentangled state is
equal to the weight of the Bell state [51]. Therefore,

Come(p) =2pmin{la|y/1 — |a |2, lazly/1 — |az|?,

lasly/1 — las|*}. 19)

In our case, due to the symmetry properties of our system, as
J1 —2a3, witha, € [0, 1/+/2]. Thus,
the GME concurrence reduces to

Come(p) = 2a; pmin {m M}
= 2min{v2|pral, VIl (T = poo — lpraD). (20)

It has to be noted that, due to the range of values of a,
p always has a nonzero GME concurrence independent of
the distance d, although it becomes vanishingly small as the
distance increases. This dependence on the distance can be
appreciated in Fig. 4, where we show the GME concurrence
CoMmE as a function of the rescaled defects’ intensity ed in the
region with a single localized energy eigenstate.

For ¢ > 1/d, more localized states appear in the ground
state of the system, and the rank of the RDM increases.
This makes finding the convex-roof extension via analytical
methods as done above for rank-2 density matrices highly
nontrivial. Therefore, in the following, we resort to the numer-
ical methods described in the previous section to determine
the lower bound of the GME concurrence and corroborate our

isequal toaj, and a; =
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FIG. 5. Lower bound on the GME concurrence as a function of ed for defects at a distance of up to 9 and & = 2. Left: Bound given by Ma
et al. [30]. Right: Bound given by Hong e al. [41]. The vertical lines at ed = 1 and ed = 3 determine the boundaries between one and two
localized eigenstates and between two and three localized eigenstates, respectively.

results by evaluating the separability criterion (13) of genuine
multipartite entanglement.

Figure 5 shows the lower bound of the GME concurrence
for h =2 as a function of ed. For completeness, we also
compute this bound for the previous case of only one localized
eigenstate (0 < ed < 1). We notice that, although the lower
bounds of the GME concurrence decrease as the defects’
separation d increases, they remain finite, indicating that long-
distance GME concurrence is attainable for every value of
& and d. Hence, the numerically derived bounds for ed > 1
confirm the presence of GME concurrence when multiple
localized states contribute to the ground state. To strengthen
these findings, we also consider the separability criterion (13),
which complements the GME results (Fig. 6). We always
found W > 0; that is, the state is not separable for any bi-
partition. Finally, we also used the separability criterion based
on the Hilbert-Schmidt distance developed in Ref. [52], and
strong numerical evidence suggests a nonzero distance to the
closest biseparable state. These results emphasize the ability
of the defects to sustain long-distance multipartite entangle-
ment that would otherwise be absent in uniform systems.

In Fig. 7 we show the concurrence between the defects
as evaluated with Egs. (14) and (15). While the concurrence

—— d=1
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— d=3
——d=4
0.6 — d=5
d=06
d=7
§().4 d=38
d=9
0.2
pates SSNae
0.0
0 1 2 3 4 5
ed

FIG. 6. Witness W in Eq. (13) as a function of €d for h = 2 and
for different distances between the defects.

between adjacent defects Ci, and Cyp3 is nonzero for smaller
&d, it vanishes beyond ed > 3 and d > 1. Similarly, the con-
currence between the outer defects C;3 is negligible for most
of the parameter space. As a consequence, density matrices
of the form of Eq. (7) can sustain states with nonzero GME
concurrence and vanishing two-qubit concurrence, similar to
X -type states [53].

B. The critical phase

For any || < 2, regardless of the value of ¢ > 0, the RDM
is always of rank 8, preventing an analytical determination
of the GME concurrence. However, like in Sec. IV A above,
we report the two lower bounds presented by Ma et al. [30]
and Hong et al. [41], the respective concurrences Ci, and Cp3,
and the separability criterion in Eq. (13). Figure 8 shows the
lower bounds for the GME concurrence, and Fig. 9 shows
the separability witness for & = 1. Like in the case of h = 2,
nonzero long-distance entanglement is present for any value
of ed also in the absence of any pairwise concurrence between
the qubits, which vanishes ford > 1 and ¢ > 0.

V. CONCLUSION

In this work, we studied the interplay between magnetic de-
fects and multipartite entanglement in an XX spin-1/2 chain
subjected to a transverse field. Using analytical techniques
complemented by numerical methods, we characterized the
emergence of localized bound states at the defect sites.

Our findings demonstrate the existence of regions in pa-
rameter space, defined by the defect intensity and separation,
where GME arises. For a single localized state, the GME
concurrence was derived analytically,. When multiple lo-
calized states were present, numerical approaches were
employed to establish lower bounds on GME concurrence
and validate multipartite entanglement through separability
witnesses.

Interestingly, while pairwise entanglement between defects
vanishes in certain regions, the GME concurrence persists,
underscoring the robustness of multipartite entanglement at
larger defect separations. This allows for the generation of
long-distance multipartite entanglement in a many-body sys-
tem with nearest-neighbor interaction by the application of
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FIG. 7. Two-qubit concurrence as a function of ed for defects at a distance of up to 9 and i = 2. Left: Concurrence between defects 1
and 2 (equivalent to the concurrence between defects 2 and 3). Right: Concurrence between defects 1 and 3. The vertical lines at ed = 1 and
ed = 3 determine the boundaries between one and two localized eigenstates and between two and three localized eigenstates, respectively.

local magnetic defects at desired locations. This approach
to the generation of multipartite entanglement appears simul-
taneously easier and more flexible than the one based on
models with cluster interactions [54,55], hence revealing a
path to possible technological applications in quantum com-
munication and quantum technologies. In addition to such
applications, our analytic results and numerical lower bounds
shed light on the properties of multipartite entanglement in
density matrices without coherence between different mag-
netization sectors, where only W-type entanglement can be
present.

Although we restricted our analysis to three defects, the
proposed method for long-distance multipartite entanglement
generation via local magnetic fields can be straightforwardly
extended to a higher number of defects to investigate higher
SLOCC entanglement classes [6] or to the XY model,
which sustains Greenberger-Horne-Zeilinger-type entangle-
ment [20].
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APPENDIX: GREEN’S FUNCTIONS METHOD

We consider the one-dimensional (1D) tight-binding
Hamiltonian in the presence of three impurities, correspond-

ing to the one in Eq. (4), decomposed as
H=H,+ H,, (A1)

where Hj is the tight-binding Hamiltonian without impurities,
characterized by nearest-neighbor interactions

Hy = Zhli)(il + JZ(li) (i+1]+H.c), (A2)

0.5 C&IA”: CgKle
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FIG. 8. Lower bound on the GME concurrence as a function of ed for defects at a distance of up to 9 and 4 = 1. Left: Bound given by Ma
et al. [30]. Right: Bound given by Hong e al. [41]. The vertical lines at ed = 1 and ed = 3 determine the boundaries between one and two
localized eigenstates and between two and three localized eigenstates, respectively.
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FIG. 9. Witness W in Eq. (13) as a function of €d for h = 1 and
for different distances between the defects.

and H, = H, + H,, + H,, denotes the perturbation, which is

assumed to be diagonal,
Hy = g|[)(I] + em|m) (m| + &x|n) (n]. (A3)

We introduce the unperturbed Green’s operator Gy corre-
sponding to Hy,

Go(z) = (A4)

L 5 Rk
z—Ho_;z—Ek'

In the limit N — o0, the set of states |k) forms a continuous
band with energies E; € I, = [2h — J, 2h + J]. The matrix
elements of Gy between two localized states are given by

(—x 4+ /X2 = 1)l

Go(r, 532) = , 21, (AS)
0 IN ¢ 1
and
—x F 11 = x2)lr=sl
Go(r,5:2) = X=X zel,  (A6)

+i1JVx2 — 1 ’

where x = Z_JJ The full Green’s operator G, corresponding
to the full Hamiltonian H, can be obtained as

G = Gy + GoT Gy, (A7)

where the 7' matrix is determined from the knowledge of Gy
and H; as

T =H,+ H GyH, + HGyH GoH; + - - - . (A8)

The T matrix can be obtained following the approach in [35].
Introducing the unit operator into Eq. (A8), we get

T =H +H Y li)ilGo ) i)' 1H +---. (A9

Since the defects are diagonal, we need to retain in the sum-
mation only the terms (|I){I| + |m)(m| + |n)(n|), which can
be written as a scalar product |«) («|, with

(1]

lo) = [I1) , Im) , In}], (| = | (m]|
(n]

(A10)

With this notation, we have

(@| T ) = (a| Hy |or) (Is — {o| Go |e) (| Hy |er)) ™",

(A11)
where
& 0 0
(alHila) =0 &n 0], (A12)
0 0 e,
Go(l,1)  Go(l,m)  Go(l,n)
(| Gola) = | Go(m, 1)  Go(m,m)  Go(m,n) |. (Al3)
Go(n,1)  Go(n,m)  Go(n, n)
The first step is to invert the matrix
I3 — (| Go |a) («| Hy |e)
[1—&Go(l,1)]  —enGo(l, m) —&,Go(l, n)
=| —&Go(m, 1) [1—enGo(m,m)] —e,Go(m,n)
—&1Go(n, 1) —enGo(n,m) [l —&,Go(n, n)]
(A14)

The determinant gives
det[I3 — (x| Go |e) (| Hy |er)]

= frmll = &:Go(l, DI[1 = £,Go(m, m)1[1 — £,Go(n, n)],
(A15)

where we define fj,,, as

flmn = {1 - tltmGO(la m)Go(m, l) - tmtnGO(mv n)G()(I’l, m)
— t:1Go(n, NGo(l, n) — tit,uty[Go(l, m)Go(m, n)Go(n, 1)
+ Go(m, 1)Go(l, )Go(n, m)]} ™ (Al6)

and
€j

=———,j (A17)
1 —¢;Go(j, j)

t =1[,m,n.
The poles of the Green’s functions for the three-defect prob-
lem can be determined from the zeros of Eq. (A16). In the
case with &, =¢,, = ¢, and |l — m| = |n — m| = d, that is,
the intensities of the magnetic field on the three defects are
the same and the defects are symmetrically placed around the
central defect, as in Fig. 2 in the main text, we find, using the
Mathematica software package and confirmed by numerical
simulations, that for 0 < ¢ < 1/d only one solution is found,
for 1 <& < 3/d two solutions are found, and for 3/d < ¢
three solutions are found, as reported in Eq. (6) in the main
text.

The emergence of three localized states can also be ob-
tained by solving the 1D Schrodinger equation with three §
potentials:

d2
- dﬁg“ VY () = EY (), (A18)
where the potential is
V(x) = —¢e[8(x +d) + 8(x) + 8(x — d)]. (A19)
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Straightforward calculations give the solutions for bound
states of this problem as

h2
O0<d<— (A20a)
2me
for one even solution,
" 3K
—<d < — (A20Db)
2me 2me

for one odd solution and one even solution, and

352
— <

A20
2me ( ©)

for one odd and two even solutions,
and by setting /i /2m = 1, we obtain Eq. (6).
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